来自瑞士的保罗谢勒研究院(Paul Sherrer Institute,PSI)的研究员们为这个难题找到了一个可行性的解决方案。在这篇发表于《自然》杂志上的文章中,他们使用了一项名为“叠层衍射X射线计算机断层扫描成像”的技术,成功的得到了一枚英特尔芯片的内部 3 维构造。
“叠层衍射成像”是一种不依赖透镜,通过恢复衍射图像中相位的成像手段。简而言之,研究人员们向一块不停旋转的芯片照射一束X射线,接着通过电脑程序分析而得到不同角度芯片的衍射图案,从而在电脑中重建芯片内部精密的三维结构。
在这次研究里,PSI的研究人员们先后对两枚芯片进行了测试。其中一枚是由PSI自行开发研制的,采用了110纳米工艺制作的专用集成电路芯片(ASIC);另一枚则是来自英特尔的奔腾G3230处理器,这枚处理器采用了22纳米的工艺,与最现代的14纳米工艺仅有一步之遥。
利用这项技术,研究人员们实现了高达14.6纳米的分辨率,成功的复原了这两块芯片的内部结构。令人倍感欣喜的是,他们可以清晰地看见芯片内部的晶体管和内部电路。
毫无疑问,PSI研究人员开发的这项手段,是芯片检测技术的一项重大飞越。
但在此之前,芯片内部的检测大多依赖于扫描电子显微镜,或透射电子显微镜来看一探究竟。这两种常规手段需要像剥洋葱一般,工作人员需耐心地、一层一层地除去芯片的上层电路,才能够最终揭示芯片内部晶体管的形貌。这一手段费时费力不说,更令人不满的是,即使再小心翼翼,仍不可避免的会破坏芯片内部的三维结构。
随着芯片的集成度越来越高,芯片内部晶体管的层数也日渐增多,实际内部电路的厚度有时可达约十微米之多。在这种情况下,依赖于电子显微镜、进行逐个分析晶体管的过程就显得难以为继。对于已经封装的电脑芯片而言,这两种手段更是无能为力。
相比于前两者,研究人员所开发的“叠层衍射成像技术”则道高一丈。这项技术集X射线所具有的两大特点于一身:高穿透率和高分辨率。
不仅如此,在芯片检测这项应用中,这项技术还拥有常规电子显微镜所难以企及的两个优势:其一,避免了对芯片内结构的破坏;其二,避免了因切割不精细而导致图像的扭曲变形。
如此一来,人们便可以利用这项技术来获取“三维结构芯片”更加完整且准确的信息。
但就目前形势来看,这项技术距离实际应用还欠些东风。在本次研究中所使用的“X射线光源”可不是某个业余爱好者可以在自家后院就能鼓捣出来的“光”。
研究人员们为了得到最好的成像效果,使用了隶属于PSI的瑞士同步辐射光源的“高相干辐射X-射线”。即使在全球,类似的同步辐射光源设施也屈指可数。
另一方面,这项研究同样也耗费了不少时间,研究人员不仅要花24小时才能完成叠层衍射实验,而且还需要另一个24小时去处理得到的数据。
不过,本次研究的负责人,同时也是该论文的第一作者莫尔克·霍勒(Mirko Holler)胸有成竹的在文章中表示:通过使用更多的计算机、改进实验装置以及X射线源,会将这一实验所需的时间缩短至现在的千分之一。
除此之外,更具挑战性的的一点在于:闻名的“摩尔定律”驱使着芯片制造商们连年推出尺寸更小的晶体管。在这种情况下,人们观察芯片所用的“放大镜”也需要拥有自己的“摩尔定律”,才不至于在这场竞赛中落下太远。
就现在的情形来看,芯片制造商们已经占了上风。在本次研究中,莫尔克·霍勒所实现的最高分辨率约为 14.6 纳米,尽管这一数字十分了不起,可目前由英特尔开发的最新一代的处理器芯片,却已经迈进了10纳米制程的门槛。
无论怎么说,这次莫尔克等人的研究将在“芯片无损检测”领域上留下浓墨重彩的一笔。随着这项技术的进一步发展,或许在不远的将来,芯片内部结构的检视不再是“一锤子买卖”。
相反的,当人们将芯片放入某个类似的装置之后,即可一览芯片的内部构造。从这个意义上说,芯片的设计似乎变得“透明”了。
与此同时,对于芯片制造商来说,这一技术的问世无疑将会对这个行业产生深远的影响。通过检视芯片内部是否存在制造缺陷这一做法,制造们可以借此实行更加严格的质量控制和品质管理方针。
除此之外,人们还能利用这项技术来确认集成电路设计,了解其内部功能,优化其生产流程,并找出可能的失效机制。
从消费者的角度看,这一技术同样惹人关注。最近,硬件安全也日益成为了一个颇受重视的话题。特别是对于国防和军工行业而言,如果能将这项技术能够加以运用,他们便可以确认,芯片内部是否存在可能窃取机密的恶意硬件,即所谓的“硬件木马”。毕竟,一块被砸坏了的芯片可是没有半点用处的。
时至今日,芯片无损检测的发展尚未成熟,但是瑞士保罗谢勒研究院的科学家们为真正的“透明芯片”的未来照亮了全新的路径。